Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362110

RESUMO

Skin exposure to high-dose irradiation, as commonly practiced in radiotherapy, affects the different skin layers, causing dry and wet desquamation, hyperkeratosis fibrosis, hard to heal wounds and alopecia and damaged hair follicles. Fetal tissue mesenchymal stromal cells (f-hPSC) were isolated from excised human fetal placental tissue, based on their direct migration from the tissue samples to the tissue dish. The current study follows earlier reports on for the mitigation of acute radiation syndrome following whole body high-dose exposure with remotely injected f-hPSC. Both the head only and a back skin flap of mice were irradiated with 16 &18 Gy, respectively, by 6MeV clinical linear accelerator electron beam. In both locations, the irradiated skin areas developed early and late radiation induced skin damages, including cutaneous fibrosis, lesions, scaring and severe hair follicle loss and reduced hair pigmentation. Injection of 2 × 106 f-hPSC, 3 and 8 weeks following 16 Gy head irradiation, and 1 and 4 weeks following the 18 Gy back skin only irradiation, resulted in significantly faster healing of radiation induced damages, with reduction of wet desquamation as measured by surface moisture level and minor recovery of the skin viscoelasticity. Detailed histological morphometry showed a clear alleviation of radiation induced hyperkeratosis in f-hPSC treated mice, with significant regain of hair follicles density. Following 16 Gy head irradiation, the hair follicles density in the scalp skin was reduced significantly by almost a half relative to the controls. A nearly full recovery of hair density was found in the f-hPSC treated mice. In the 18 Gy irradiated back skin, the hair follicles density dropped in a late stage by ~70% relative to naïve controls. In irradiated f-hPSC treated mice, it was reduced by only ~30% and was significantly higher than the non-treated group. Our results suggest that local injections of xenogeneic f-hPSC could serve as a simple, safe and highly effective non-autologous pro-regenerative treatment for high-dose radiation induced skin insults. We expect that such treatment could also be applied for other irradiated organs.


Assuntos
Placenta , Pele , Humanos , Camundongos , Feminino , Gravidez , Animais , Placenta/patologia , Pele/patologia , Células Estromais/patologia , Alopecia/patologia , Feto/patologia , Fibrose
2.
Stem Cell Res Ther ; 11(1): 337, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746939

RESUMO

PURPOSE: Selected placental mesenchymal stromal cells isolated from the fetal mesenchymal placental tissues (f-hPSCs) were tested as cell therapy of lethal acute radiation syndrome (ARS) with bone marrow regeneration and induced extramedullary hematopoiesis. METHODS AND MATERIALS: f-hPSCs were isolated from the chorionic plate of human placentae and further expanded in regular culture conditions. 2 × 106 f-hPSCs were injected on days 1 and 4 to 8-Gy total body irradiated (TBI) C3H mice, both intramuscularly and subcutaneously. Pre-splenectomized TBI mice were used to test the involvement of extramedullary spleen hematopoiesis in the f-hPSC-induced hematopoiesis recovery in the TBI mice. Weight and survival of the mice were followed up within the morbid period of up to 23 days following irradiation. The role of hematopoietic progenitors in the recovery of treated mice was evaluated by flow cytometry, blood cell counts, and assay of possibly relevant growth factors. RESULTS AND CONCLUSIONS: The survival rate of all groups of TBI f-hPSC-treated mice at the end of the follow-up was dramatically elevated from < 10% in untreated to ~ 80%, with a parallel regain of body weight, bone marrow (BM) recovery, and elevated circulating progenitors of blood cell lineages. Blood erythropoietin levels were elevated in all f-hPSC-treated mice. Extramedullary splenic hematopoiesis was recorded in the f-hPSC-treated mice, though splenectomized mice still had similar survival rate. Our findings suggest that the indirect f-hPSC life-saving therapy of ARS may also be applied for treating other conditions with a failure of the hematopoietic system and severe pancytopenia.


Assuntos
Transtornos da Insuficiência da Medula Óssea , Células-Tronco Fetais , Hematopoese , Células Estromais , Irradiação Corporal Total , Animais , Transtornos da Insuficiência da Medula Óssea/terapia , Feminino , Células-Tronco Fetais/transplante , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C3H , Placenta , Gravidez
3.
Cryobiology ; 89: 100-103, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31128944

RESUMO

The injection of placental stromal cells isolated from fetal human tissues (f-hPSC) was reported to indirectly induce tissue regeneration in different animal models. A procedure of f-hPSC isolation from fragments of both selected fresh or cryopreserved bulk placental neonate tissues is proposed, based on their high migratory potential,. The fragments of the desired fetal placental tissues are adhered to a culture dish by traces of diluted fibrin and covered with culture medium. Spontaneous migration of pure f-hPSC from the tissue fragments to the cell culture dishes is followed by their rapid expansion by numerous passages. The isolated f-hPSC express typical mesenchymal surface antigens, including CD29, CD105, CD166 and CD146, with negative expression of white blood cell lineage and endothelial cells markers. Optimal yields of f-hPSC cultures can also be obtained from tissue samples cryopreserved in medium composed of 10% dimethyl sulfoxide (M2SO) and 50% fetal calf serum. Slightly better yields are obtained with media supplemented with 1% human albumin. Medium with 5% M2SO and/or 0.25 mg/ml PEG yielded inferior results. The f-hPSC from fresh or cryopreserved tissues express similar cell markers and growth kinetics. The proposed isolation protocol may also be applied for high yield isolation of stromal cells from fresh and cryopreserved tissue of other organs.


Assuntos
Criopreservação/métodos , Células Endoteliais/fisiologia , Células-Tronco Mesenquimais/fisiologia , Placenta/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Crioprotetores/farmacologia , Meios de Cultura , Dimetil Sulfóxido/farmacologia , Feminino , Humanos , Recém-Nascido , Gravidez
4.
J Cachexia Sarcopenia Muscle ; 9(6): 1079-1092, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30334381

RESUMO

BACKGROUND: Most current cell-based regenerative therapies are based on the indirect induction of the affected tissues repair. Xenogeneic cell-based treatment with expanded human placenta stromal cells, predominantly from fetal origin (PLX-RAD cells), were shown to mitigate significantly acute radiation syndrome (ARS) following high dose irradiation in mice, with expedited regain of weight loss and haematopoietic function. The current mechanistic study explores the indirect effect of the secretome of PLX-RAD cells in the rescue of the irradiated mice. METHODS: The mitigation of the ARS was investigated following two intramuscularly (IM) injected 2 × 106 PLX-RAD cells, 1 and 5 days following 7.7 Gy irradiation. The mice survival rate and their blood or bone marrow (BM) cell counts were followed up and correlated with multiplex immunoassay of a panel of related human proteins of PLX-RAD derived secretome, as well as endogenous secretion of related mouse proteins. PLX-RAD secretome was also tested in vitro for its effect on the induction of the migration of BM progenitors. RESULTS: A 7.7 Gy whole body mice irradiation resulted in ~25% survival by 21 days. Treatment with two IM injections of 2 × 106 PLX-RAD cells on days 1 and 5 after irradiation mitigated highly significantly the subsequent lethal ARS, with survival rate increase to nearly 100% and fast regain of the initial weight loss (P < 0,0001). This was associated with a significant faster haematopoiesis recovery from day 9 onwards (P < 0.01). Nine out of the 65 human proteins tested were highly significantly elevated in the mouse circulation, peaking on days 6-9 after irradiation, relative to negligible levels in non-irradiated PLX-RAD injected mice (P < 0.01). The highly elevated proteins included human G-CSF, GRO, MCP-1, IL-6 and lL-8, reaching >500 pg/mL, while MCP-3, ENA, Eotaxin and fractalkine levels ranged between ~60-160pg/mL. The detected radiation-induced PLX-RAD secretome correlated well with the timing of the fast haematopoiesis regeneration. The radiation-induced PLX-RAD secretome seemed to reinforce the delayed high levels secretion of related mouse endogenous cytokines, including GCSF, KC, MCP-1 and IL-6. Additional supportive in vitro studies also confirmed the ability of cultured PLX-RAD secretome to induce accelerated migration of BM progenitors. CONCLUSIONS: A well-regulated and orchestrated secretion of major pro-regenerative BM supporting secretome in high dose irradiated mice, treated with xenogeneic IM injected PLX-RAD cells, can explain the observed mitigation of ARS. This seemed to coincide with faster haematopoiesis regeneration, regain of severe weight loss and the increased survival rate. The ARS-related stress signals activating the IM injected PLX-RAD cells for the remote secretion of the relevant human proteins deserve further investigation.


Assuntos
Síndrome Aguda da Radiação/metabolismo , Síndrome Aguda da Radiação/terapia , Placenta/citologia , Células Estromais/metabolismo , Células Estromais/transplante , Redução de Peso , Síndrome Aguda da Radiação/diagnóstico , Animais , Transplante de Células , Citocinas , Modelos Animais de Doenças , Feminino , Hematopoese , Humanos , Injeções Intramusculares , Masculino , Camundongos , Gravidez , Irradiação Corporal Total
5.
Stem Cells Transl Med ; 6(4): 1286-1294, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28371563

RESUMO

Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS) with no effective treatment available for the chronic-progressive stage. Cell therapy is a promising therapeutic approach for attenuating the immune-mediated CNS process. Isolated and expanded human placental stromal cells (hPSCs) possess potent immunomodulatory and trophic properties, making them a good candidate for MS therapy. We examined the potential of hPSC therapy in preventing the onset or attenuating the course of established disease in a murine MS model of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. We examined the feasibility of hPSC systemic delivery by intramuscular (i.m.) implantation rather than the commonly used intravenous injection, which is dose-limiting and carries the risk of pulmonary obstruction. Our findings showed significant attenuation of the disease only when hPSCs were injected directly to the central nervous system. Intramuscular implanted hPSCs survived at the site of injection for at least 2 months and elicited extensive local immune responses. Intramuscular hPSC implantation before disease onset caused a delay in the appearance of clinical signs and reduced the severity of a relapse induced by repeated challenge with the autoantigen. Intramuscular implantation after disease onset did not affect its course. Thus, pathological analysis of CNS tissue did not show inhibition of neuroinflammation in i.m. hPSC-implanted mice. Moreover, no apparent effect was seen on the proliferative response of peripheral lymph node cells in these animals. We conclude that to maximize their therapeutic potential in MS, hPSCs should be delivered directly to the affected CNS. Stem Cells Translational Medicine 2017;6:1286-1294.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Encefalomielite Autoimune Experimental/terapia , Placenta/citologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/terapia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Gravidez , Células Estromais/citologia , Células Estromais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...